Nanomedicine started out with a bang in 2005, with the U.S. Food and Drug Administration’s (FDA) approval of Abraxane in January, considered a seminal event by industry experts. And experts predict 2006 will be another good year for nanomedicine. In fact, this year may bring several new nano-based drug approvals and the continued rapid evolution of tools and enabling technologies that are propelling the development of drugs, delivery vehicles, diagnostics, and medical devices.

According to data compiled by NanoBiotech News in the 2006 Nanomedicine, Device & Diagnostic Report, more than 130 nano-based drugs and delivery systems and 125 devices or diagnostic tests have entered preclinical, clinical, or commercial development -- up from 61 drugs and 91 devices and diagnostics the previous year, meaning the clinical pipeline has grown 68% since last year at this time.

Even with big pharma companies largely sitting on the sidelines, start-up companies are surviving and even thriving and new start-ups are emerging nearly every month. And the U.S. government added financial muscle to nanobiotech development in 2005, with major capital infusions through the National Cancer Institute’s Alliance for Nanotechnology in Cancer and the National Institutes of Health’s Program of Excellence in Nanotechnology. The U.S. remains the leader in terms of the sheer number (75%) of nano-based medical products in development, and of the 25% of drug and device candidates being developed outside of the U.S., Canada, Australia and Israel are working on 43% of the total 63 drugs and devices in the works around the world.

Nucryst files IPO to raise $45M, tests powdered nanocrystalline silver

By Russell A. Jackson

Calgary, Alberta, Canada’s Westaim Corp. (NASDAQ:WEDX; TSE:WED) is taking its subsidiary Nucryst Pharmaceuticals Corp. public with an initial public offering (IPO) in hopes of raising US$45 million.

Company officials are in a quiet period and could not comment, but the firm’s Securities and Exchange Commission filings indicate the money will be used for “capital expenditures, research and development and general corporate purposes” -- and to pay back its parent.

After the offering, Westaim will continue to own a majority equity position in Nucryst. Indeed, the prospectus points out, “immediately after comple- continued on page 4
Phase II trials slated for nanoparticle-based psoriasis treatment

By Steve Lewis

A topical treatment derived from the Novasome nanoparticle delivery system developed by IGI, Inc. (AMEX:IG) will soon be entering phase II trials for the treatment of psoriasis. IGI has sublicensed peptide receptor PTH (1-34) for the treatment of psoriasis to Manhattan Pharmaceuticals, Inc., of New York.

“We had very encouraging open study results,” says Frank Gerardi, chairman and CEO at Buena, NJ-based IGI. “I know Manhattan Pharmaceuticals will be very active in pursuing clinical trials as fast as possible; they have raised the necessary capital.”

The Novasome technology is part of an IGI IP portfolio, which includes over 40 patents. The company, which was founded in 1977, developed the nanosphere delivery technology in the 1980’s.

The Novasome microvesicle, described by IGI as a “versatile lipid microcarrier with a large inner cargo hold,” ranges between 200 and 400 nm. Novasomes contain three moisture compartments: water outside of the vesicle; water inside the core of the vesicle; and osmotically bound water in between the layers of the vesicle. Multiple bilayers allow time release of inner core contents and hold both bound water and “cargo;” this relatively large “cargo hold” permits prolonged release of moisture and ingredients.

“We have a delivery nanosphere technology that enhances delivery and gives many benefits -- including time release, penetrating into the derma, it is non-irritating, and because of the large cargo area of nanosphere it is able to deliver many more ingredients than another technology,” Gerardi asserts.

The technology, he continues, offers targeted results by having controlled delivery of active ingredients to particular skin layers; enhances the desired effects of the active ingredients; and allows a higher percentage of actives without irritation.

“Some other technologies allow 1% -1.3%, but we can bump that up to 5%,” Gerardi says. “We can also combine active ingredients together that otherwise would not be possible to combine.”

A two-pronged approach

IGI is continuing to grow along two simultaneous paths -- cosmetic products, and medical products for the treatment of pain and dermatologic disease. At present, its top five licensees are Johnson & Johnson, Estee Lauder, Pierre-Fabre Dermo-Cosmetique, Chattem, Inc., and Manhattan Pharmaceuticals.

The company will receive milestone payments and royalty payments from Manhattan Pharmaceuticals if the product is approved by the U.S. Food and Drug Administration. IGI is also exploring licensing opportunities for topical PTH (7-34) for the prevention/treatment of chemotherapy-induced Alopecia in patients undergoing chemotherapy and in normal healthy volunteers.

“We also licensed adenosine for the prevention of photo damaged skin and wrinkles to the University of Massachusetts Medical School,” adds Gerardi. “Adenosine stimulates DNA synthesis, increases protein synthesis and increases cell size. It also provides a method for promoting healing of broken, non-diseased skin and decreases the amount of wrinkling, roughness, and dryness of skin.”

IGI’s collaboration with Chattem, of Chattanooga, TN, involves the Icyhot Sleeve, an over-the-counter analgesic worn on the arm. “This was a pre-existing product,” says Gerardi, “But the company needed a 10-12 hour release of the product, and our technology enabled us to do it.”

IGI is also developing its own topical anesthesia for the skin, Gerardi reports, noting it is currently embarked on a three-month stability continued on page 3
IGI from Page 2

study. “It will be used primarily for plastic surgeons who use fillers like Botox, which can be painful; we believe our product will diminish the pain these patients experience,” says Gerardi. He adds it could also be used by individuals receiving tattoos, and anyone being injected or getting an IV. “We believe the topical analgesic will be ready to market in the second quarter of 2006,” Gerardi says, noting the company believes the product could produce a minimum of $100 million in annual sales.

Gerardi is optimistic about his company’s prospects in 2006. “The most imperative thing we’ve done in 2005 was the removal of our exclusivity agreement with Estee Lauder, which now lets us offer our technology to the masses,” he says. “We knew there would be a short-term decline in revenues, but we felt it was necessary to do for our sustained growth positioning, and it shows by the products we’re developing with Chattem and others.”

For example, he says, IGI is now working with Genesis Pharmaceutical, Inc., to apply its technology to Alpha Hydroxy (used for acne and other skin conditions), as well as a line of skin care products.

Reference

Starpharma raises another AUD$15 million

By Russell A. Jackson

Starpharma Holdings Limited, (ASX:SPL, USOTC:SPHRY) of Melbourne, Australia has completed the second tranche of its institutional placement and has finalized its share purchase plan.

The efforts together raised AUD$15 million. And that, says Paul Barrett, manager, business development, is enough to fund operations for two full years.

“We are not permitted to disclose shareholder identities,” Barrett says, adding, “70% of the new money was institutional. Some of those were already investors, some of them weren’t.”

“Our mission is unchanged,” Barrett says. “It remains to discover, develop and commercialize dendrimer nanopharmaceuticals. And our strategy is not changed by [the latest] round of funding. It remains threefold: Develop VivaGel as quickly as possible, capture value from the rest of our dendrimer pipeline by partnering and licensing and enhance value through equity investments, specifically Dendrimer NanoTechnologies Inc. and Dimerix Bioscience Pty Ltd.

VivaGel is a vaginal microbicide designed to prevent the transmission of sexually transmitted infections including HIV and genital herpes. It is the first product to come from the firm’s dendrimer-based discovery pipeline, which also includes specific programs using dendrimers to control where and when drugs go when introduced into the body, programs using dendrimers’ ability to activate multiple receptors simultaneously and programs using dendrimers as a scaffold to which both location-signaling and targeting groups are added to allow the location of a specific cell type, such as a cancer cell.

Starpharma’s institutional placement was oversubscribed and raised a total of AUD$12 million through the issue of shares in two tranches. The first tranche of the share placement to raise AUD$4.88 million was the maximum number of shares permitted under ASX Listing Rule 7.1 to be issued without shareholder approval. The second tranche of shares to raise AUD$7.12 million was approved at “an extraordinary general meeting of shareholders” in mid-December.

That meeting also ratified the issue of the first tranche of shares and approved the underwriting of the SPP, the statement continues. The underwritten SPP closed in mid-December and raised AUD $3 million. Now, says CEO John Raff, “Starpharma is in the fortunate position where our lead project is largely externally funded.” And, Barrett adds, while “we don’t normally comment on the specifics of future fundraising activities, we would note that we now have funds for more than two years’ operations at the current rate of expenditure.”

Starpharma’s American Depository Receipts trade under the code SPHRY, and each is equivalent to 10 ordinary shares of Starpharma as traded on the Australian Stock Exchange. The Bank of New York is the depository bank.

Editor’s Note: Contact Paul Barrett at +61 3 8532 2739.
Nanomedicine from Page 1

A plethora of new deals brewed in 2005. Nearly a third (30%) of all products are under development as part of collaborations or licensing deals, a trend similar to the biotechnology industry evolution.

But during tough markets, only the top deals attract capital, says Douglas W. Jamison, president of New York venture capital firm Harris & Harris Group, Inc. (NASDAQ:TINY). When the market opens up, marginal companies also receive funding -- not necessarily a positive event for the market but certainly good news for start-up companies. From a capitalization standpoint, the biggest news during 2005 was the introduction of $20 million series A financings, which allowed companies to move their technologies into phase II clinical trials, Jamison says. But without new players coming into the nanobiotech market, the same investors are putting money into these deals.

Consequently, he expects to see fewer early stage deals in 2006 and a corresponding weed-out of nanobiotech start-ups.

“This could be the winnowing year for nanobiotech,” Jamison says. “The cream will rise, and others will fail to receive second and third rounds of funding. In fact, that’s already starting to occur.”

**Editor’s Note: The NanoBiotech News 2006 Nanomedicine, Device & Diagnostic Report provides the hard data you need to spot important trends and seize opportunities for collaborations and competitive developments in 2006. The publisher of NanoBiotech News has developed this in-depth review to help executives and investors alike with the vital information needed to make strategic investment and growth decisions. It’s an invaluable tool available only to current subscribers of NanoBiotech News. But, as a special welcome to new subscribers, we’ll offer this unique report as a bonus. Non-subscribers who need the report can purchase the guide for $199 by calling (404) 607-9500 or (800) 597-6300 or visiting www.nanobiotechnews.com.”

Nucryst from Page 1

...of [the] offering, Westaim will directly own approximately 75.1% of our outstanding common shares -- or approximately 71.5% if the underwriters’ over-allotment option is exercised in full.”

In the IPO, Westaim is offering 4,500,000 common shares of its Nucryst at US$10 a share. Once the deal is done, Nucryst common shares will trade on the Nasdaq National Market as NCST and on the Toronto Stock Exchange, in Canadian dollars, under the trading symbol NCS. The shares are being offered by an underwriting syndicate led by Jefferies & Company Inc. and co-managed by Adams Harkness Inc., GMP Securities LP and SunTrust Robinson Humphrey.

Nucryst has granted those underwriters a 30-day option to buy as many as 675,000 more common shares to cover over-allotments, if any. Net proceeds from the offering are expected to be approximately US$39.9 million, or US$46.1 million if the underwriters exercise their over-allotment option in full, after deducting underwriting discounts and commissions and estimated offering expenses.

Nucryst plans to use approximately US$35 million of the net proceeds for basic business purposes, including an estimated $5.7 million for the expansion of its Fort Saskatchewan production facility -- a project that began at the end of the third quarter of 2005 -- and an estimated $2 million to purchase pharmaceutical development capital equipment in 2006. In addition, the prospectus notes, the company “may use a portion of the net proceeds for acquisitions of intellectual property or companies engaged in the development or production of drugs or devices to combat infection and inflammation.”

For now, though, Nucryst “[has] no agreements or understandings regarding any such acquisitions. Any such acquisition may require that [the company] obtain additional financing.”

The remainder of the proceeds have been tagged for Nucryst’s indebtedness to Westaim. After that, the prospectus points out, “all debt owed to Westaim that is not repaid with the proceeds of [the] offering will be exchanged for common shares that [Nucryst] will issue to Westaim, at the public offering price in [the] offering.”

Nucryst originally expected to owe Westaim about $6.9 million, assuming no exercise of the underwriters’ over-allotment option. Under those terms, Nucryst would trade out about $83.5 million of its debt to Westaim, in the form of about 3,852,200 common shares. If the underwriters were to exercise their over-allotment option in full, the repayment amount would jump to $13.1 million and the accompanying stock tally would drop to 3,224,450 common shares.

But that was based on a Sept. 30, 2005 total debt of about $45.4 million. As of Dec. 15, 2005, the aggregate principal amount of debt was closer to $46.5 million. That means that “to the extent that the amount of our debt to Westaim exceeds $45.4 million, the actual number of common shares we issue and the percentage of our outstanding common shares to be owned by Westaim -- and the total number of common shares to be outstanding immediately after [the] offering -- will exceed the corresponding numbers of common shares and the corresponding percentages of our outstanding common shares reflected elsewhere in [the] prospectus.”

continued on page 5
Nucryst from Page 4

Specifically, the document points out, Westaim would get 112,000 more common shares, assuming the level of debt remains fairly constant until repaid.

Nucryst develops, manufactures and commercializes medical products that fight infection and inflammation based on the nanocrystalline silver technology that, the company says, “enables us to convert silver’s microcrystalline structure into an atomically disordered nanocrystalline coating that we believe significantly enhances silver’s natural antimicrobial properties.”

Advanced wound care products with the company’s Silcryst coatings are sold by Smith & Nephew plc under an exclusive license in over 30 countries under its Acticoat trademark.

Now, the company is also looking to “convert the microcrystalline structure of other noble metals, such as gold and platinum, into an atomically disordered nanocrystalline structure,” the prospectus reports. “We intend over time to continue our research with the objective of using our technology platform to enhance the recognized therapeutic effects of gold and platinum in the treatment of arthritis and cancer, respectively.”

Nucryst is also developing pharmaceutical products to address medical conditions characterized by infection and inflammation. It has, the prospectus explains, developed its nanocrystalline silver in a powder form for use as an active pharmaceutical ingredient, referred to as NPI 32101.

Phase II trials of dermatitis drug continue

“We are currently engaged in phase II clinical trials of a topical cream formulated with NPI 32101 to relieve the symptoms of atopic dermatitis, a form of eczema that has no cure,” the company reports. More than 15 million people in the United States suffer from symptoms of atopic dermatitis, according to information published by the National Institute of Arthritis and Musculoskeletal and Skin Disease. “We believe that a cream containing NPI 32101 may be well-received by physicians and patients because it appears, based on the results of our pre-clinical and clinical trials, to address both inflammation and infection without presenting the potential rare drug-related serious adverse side effects associated with steroids and topical immunomodulators.”

In addition, the company says, NPI 32101 “may be useful for treating a wide range of infectious and inflammatory diseases, such as dermatological and gastrointestinal conditions.”

Nucryst’s SILCRYST coatings “exhibit rapid antimicrobial activity, killing many organisms within 30 minutes of application, which is faster than many other commercially available forms of antimicrobial silver,” the company boasts. Those organisms include gram positive and gram negative bacteria, including some antibiotic-resistant strains in both classes, fungi and yeast.

The nanocrystalline silver exhibits its anti-inflammatory properties in three ways, the firm says. It suppresses two naturally occurring inflammatory agents and reduces the level of a naturally occurring enzyme. In addition, it increases the natural cell death of inflammatory cells called polymorphonuclear leukocytes, or PMNs.

Editor’s Note: Contact Westaim’s David Wills at (416) 504-8464.
NanoLogix, Nutra Pharma mend rift, assign Identikit patents

By Russell A. Jackson

NanoLogix Inc. (Pink Sheets: NNLX), of Sharon, PA, has separated from its former parent, Boynton Beach, FL-based Nutra Pharma Corp. (OTCBB: NPHC). It’s also now completely separate from the Identikits product line, which Nutra Pharma now controls.

“There may have been some degree of misunderstanding,” reports Randall Goulding, Esq. CPA, NanoLogix’s general counsel and head of The Law Offices of Randall S. Goulding, Northbrook, IL. But in the end, “NanoLogix was in discussions with Nutra Pharma” and “reached a resolution that in the long run is best for everyone.”

The misunderstanding came via a NanoLogix–issued press release in late December that stated the company, “has commenced action necessary to block a hostile takeover bid for NanoLogix’s patent portfolio by Nutra Pharma, which owns approximately 11% of NanoLogix, following a transaction in which Nutra Pharma spun out NanoLogix in late September 2004.”

The problem? “Pursuant to a Letter of Intent executed in late July 2005 between the two companies,” according to the statement, “Nutra Pharma drafted definitive agreements that NanoLogix management contends do not conform to the terms included in the original understanding. Instead, Nutra Pharma is demanding the assignment of virtually all of the company’s patents instead of a non-exclusive license of all related patents.”

Because of the perceived takeover threat, the statement noted, “NanoLogix management secured a fairness opinion and analysis from an independent CPA firm and the company’s general counsel. The conclusion reached by both parties suggests that Nutra Pharma’s demands would be grossly unfair to the company and to its shareholders.”

In particular, the analysis said, according to NanoLogix, that “the consideration offered by Nutra Pharma is not commensurate with what we believe the current fair market value of the intellectual property to be with respect to perceived and potential future value.” Indeed, Mitchell S. Felder MD, CEO at NanoLogix, commented in the statement “Nutra Pharma is all too aware of the real potential economic value of NanoLogix’s patent portfolio. While we want to continue our relationship with Nutra Pharma, we are not willing to release the principal assets of NanoLogix for anything less than fair value.”

Nutra Pharma’s demands, Felder continued, “are clearly not in the best interest of the company and its shareholders. If Nutra Pharma were to agree to reasonable terms, we would consider a transfer of our intellectual property.” Indeed, Goulding added, “effectively, what Nutra Pharma was trying to do is to acquire all of the assets of NanoLogix at a fraction of their intrinsic value. Their ‘offer,’ if that is what you want to call it, is grossly unfair, egregious and is overreaching.”

He continued: “Recognizing the inherent value of the patent portfolio, we have introduced the company to various strategic investors to assure that [a planned] bioreactor facility will be constructed [and that funding will be provided] to bring to market and monetize the remainder of the company’s patent portfolio.” In fact, the press release stated, “the company is evaluating offers from various venture capitalists and strategic investors to fund the company and enable it to exploit the value of [its] patents, as opposed to continuing discussions with Nutra Pharma.”

That was perhaps the proverbial straw that broke Nutra Pharma CEO Ric Deitsch’s back. Deitsch told NanoBiotech News “we offered 4.5 million shares, our entire holding in Nanologix, in return for 11 of their patents -- [the ones] that cover the Identikits. They had 31 patents and they don’t use those. They have never used [them]. There’s never been any revenue in 14 years.”

In addition to the shares, he added, “we were offering them 6% licensing fees.” The NanoLogix shareholders “perceived it as a positive,” he commented, but “the management of NanoLogix perceive it as a negative.”

Says Goulding: “Essentially, 11 of the patents that Nutra Pharma can best use are going to be assigned, and there will be minimum royalties paid. Most notably, that means the Identikits will be assigned and, we hope, exploited by Nutra Pharma. It seems to be very well positioned to do so. We believe they’ll be better positioned to successfully exploit them than NanoLogix would be. The rest of the patents, which Nutra Pharma is not interested in or poised to exploit, they will retain no interest in.”

In addition, Goulding says, “with regard to the patents being assigned, there will be a license path to NanoLogix for its use in connection with hydrogen production.” In fact, he says, “everything with regard to hydrogen will be retained by NanoLogix.” Also part of the transaction is that Nutra Pharma “is returning the stock that it holds in NanoLogix,” he adds, “and Nutra Pharma is giving some options on [its] stock to NanoLogix. In the long run, everything works out nicely.”

In the short run, he adds, “some nice things are about to happen.”

Editor’s Note: Contact Mitchell Felder at (724) 346-1302, Randall Goulding at (847) 828-3700 and Ric Deitsch at (954) 295-1952.
Research validates Fluidigm chips for nanogram scale synthesis of molecular imaging

By Steve Lewis
A team of researchers from several West Coast institutions have demonstrated proof of principle for South San Francisco, CA-based Fluidigm Corp.’s integrated fluidic circuit (IFC) technology for multistep, nanogram scale synthesis of molecular imaging probes.

Their research was reported in Science. Fluidigm produces rubber-like chips that incorporate miniature active elements for regulating sequential processes involved in chemical manipulations.

“One of our successes is that we have taken microfluidics and found how to integrate them in a user-friendly manner with the macro world, so that customers can load samples, etc. That’s why [the technology] is called ‘integrated’ microfluidics,” explains Paul Wyatt, vice president of operations and process development for Fluidigm.

The research was conducted by a big team, says Hsian-Rong Tseng, PhD, assistant professor in the Department of Molecular & Medical Pharmacology, Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, CA, and one of the paper’s authors.

The leader of the institute’s team, he explains, was Michael E. Phelps, the inventor of the positron emission tomography (PET) scan. “When we talked about miniaturization, we got Stephen Quake on board. [Quake, PhD, Fluidigm co-founder, developed its core technology at the California Institute of Technology, where he is a faculty member in applied physics.] He had the technology to miniaturize the PET probe production.”

While Quake pioneered the technology (Fluidigm holds five patents, with more than 60 pending patents), first author Chung-Cheng Lee, and Tseng’s post-doc, Guodong Sui, filed the first patent for the IFCs for PET production. Siemens Medical Solutions USA, Inc., of Culver City, CA, which has formed a collaboration with Fluidigm, brought to the table their long-standing history with molecular imaging probes for PET scans. The other team member was the Department of Bioengineering at Stanford University in Palo Alto, CA.

Synthesizing FDG

The research reported in Science demonstrates nanogram synthesis of the radiolabeled glucose analog, fluorodeoxy-glucose (FDG), on Fluidigm’s IFCs, which, says Wyatt, have been the company’s main focus for the past year. The researchers designed the study around FDG for two reasons: FDG is widely used as a molecular imaging probe in patient diagnosis with PET -- an estimated two million doses were administered worldwide in 2004 -- and the multi-step process for preparing FDG serves as a proof of concept.

“We just tried to demonstrate the concept of being able to produce the probe; for commercial purposes we call it the ‘black box,’” says Tseng. “We synthesized the FDG by several steps: fluoride concentration, water evaporation, radiofluorination, solvent exchange, and then hydrolysis to remove the protecting group on the precursor. This is conventionally done on big machines; now we can use a chip that is pretty much like a penny.”

The other part of the research involved producing enough FDG by using one chip to directly go to a mouse and show successful imaging.

“Starting from production we can produce enough molecules, it’s not harmful, and we can do animal imaging,” Tseng asserts. “It worked perfectly.”

Several advantages seen

Miniaturization offers a number of advantages, Tseng continues. “It has high efficiency,” he says. “You save a lot of probe, it’s faster, the radio-compound decayed quickly, so you save a lot of radiopharmaceuticals because they have no time to decay. And, since the chip is small, you use less precursor material.”

Synthesizing FDG is challenging because the half-life of the radio-fluorine is only 110 minutes, which strictly limits the time for synthesizing and labeling glucose and then administering it to a patient. Currently, FDG is synthesized using large volumes and masses of reactants with bulky and expensive electromechanical devices, requiring synthesis times of about 50 minutes. With Fluidigm’s IFCs, FDG may be prepared at the nanogram scale on a chip; thus reactions are more efficient and synthesis is reduced to approximately 15 minutes, leaving a wider margin of time for clinical use.

“By being able to synthesize the FDG allows the customer to receive fluorinated water that has a half-life and can be synthesized in the hospital to dose patients,” notes Wyatt.

For a lot of molecular imaging probes, Tseng adds, “You don’t even know how to handle it by hand when you have a peptide or a valuable biological molecule without destroying it. With microfluidics, you just inject it into the chip.”

Another advantage, he offers, is that researchers have various molecules and compounds they might want to label, so they can do a continued on page 8
Molecular imaging from Page 7

PET scan and see what metabolisms or tissues the compound would have an affinity for. “Being able to radiolabel and inject these compounds is a valuable tool for researchers,” Tseng asserts.

A seed technology

The research on this technology is moving so rapidly that what was reported in *Science* is already the past,” Tseng says. “Three or four papers will follow this one, talking about image and probe screening. All kinds of new technologies are possible; this is a seed technology. It could have applications in pharmacology, cell biology, molecular biology. You can do all kinds of tests on the chip, and see all kinds of imaging.”

For example, in the *Science* paper the authors referred to the limitations of the ‘current’ chips due to their PDMS elastomer, which is not chemically resistant to most organic solvents. “Now, our prototype device is using solvent-resistant material,” says Tseng. These elastomeric materials show promise for a broad range of chemical synthesis.

The new generation device, he continues, now can produce dosage enough for five patients. “The company tells me that within two years a commercialized version of this device will be on the market,” Tseng shares.

The current device, actually fifth generation, takes 48 hours to go from blueprints to a working device, according to Tseng. “One chip costs about $10,” he adds. “That’s the power of the technology -- and you can custom-design it to suit any kind of purpose.”

A second major area of applications, says Tseng, involves pharmaceuticals. “Big pharma companies face the difficulty of trying to understand the pharmacokinetics of their new drugs,” he notes. “What we propose now, is if you have a new drug and want to see its pharmacokinetics, you will be able use this technology, label your drug and visualize how goes along the system.”

To do this, he adds, those companies will not have to give up their secrets. “They will just have to buy the platform from us and make it in-house,” he explains. “They won’t have to hire a radiochemist, either.” In fact, he adds, clinics or hospitals will be able to do their own in-house molecular imaging using the Fluidigm technology.

The research was supported by the UCLA-DOE Institute for Molecular Medicine Institute, the National Cancer Institute, the Norton Simon Research Foundation, a National Institutes of Health training grant at UCLA, and a collaboration between Fluidigm and Siemens.

Reference